SOS in Biochemistry, Jiwaji University, Gwalior M.Sc. II Semester (2019-20) Paper BCH 205: Fundamentals of Molecular Biology (Unit II)

The Process of Transcription

- Initiation
 - Where/when most regulation of gene expression occurs
 - Different between proks & euks
- Elongation
 - Essentially same between prokaryotes & eukaryotes
 - Some regulation, more in proks than euks
- Termination
 - Different between proks & euks
 - Some regulation

Transcription Proceeds Through 3 Steps

Initiation

- Transcription factors & RNA polymerase recognize & bind the promoter
 - DNA adjacent to the promoter is denatured forming the open promoter complex

Elongation

➢ RNA polymerase moves along the DNA in synthesizing a RNA transcript. Synthesis is 5'→3' – Only 1 strand of DNA is read as a template.

Termination

A termination signal is reached causing RNA polymerase to dissociated from the DNA

Prokaryotic Transcription Initiation

Prokaryotic Promoter

Conserved Sequence:

Any essential nucleotide sequence should be present in all the promoter

Consensus Sequence:

It is defined by aligning all known examples so as to maximize their homology

	Reaching A Consensus				
<i>lac</i> operon	-35 region -10 region +1 Transcribed TTTACA N ₁₇ TATGTT N ₆ A				
<i>lac</i> l	GCGCAAN ₁₇ CATGAT N ₇ A				
<i>trp</i> operon	TTGACA N ₁₇ TTAACT N ₇ A				
rrnX	TTGTCT N ₁₆ TAATAT N ₇ A				
recA	TTGATA N ₁₆ TATAAT N ₇ A				
lexA	TTCCAA N ₁₇ TATACT N ₆ A				
tRNA ^{tyr}	TTTACA N ₁₆ TATGAT N ₇ A				
Consensus	TTGACA TATAAT				

A Prokaryotic Promoter

Specificity of Promoter Elements

- **1. Start Point A purine (>90% of the time) e.g., CAT**
- 2. -10 Box (Element) Pribnow identified this element required for sequence specific contact of sigma 2.3 & 2.4 regions

(can affect the binding or the melting reaction from closed promoter to open promoter)

3. -35 Box (Element) – Required for sequence specific contact of sigma 4.2 region

(can affect initial binding of RNA Polymerase)

4. UP Element – Increases promoter's strength

(e.g., found in promoters of rRNA genes)

- 5. Discriminator Region GGG found in rRNA & tRNA promoters
- 6. Extended -10 Element TGn sequence found in σ^{70} promoters that lack -35 elements

7. Separation between -10 & -35 elements – 16 to 18 bp

(can influence strength of a promoter)

DESIGN OF A PROKARYOTIC PROMOTER

DESIGN OF A PROKARYOTIC PROMOTER

Regions of Sigma Factors

Four main regions that are generally conserved.

N-terminus ----- C-terminus

1.1 2 3 4

DNA elements & RNA polymerase modules that contribute to promoter recognition by sigma factor

SIGMA (o) FACTORS

- **1.** A sigma factor is a protein needed only for initiation of RNA synthesis.
- 2. It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase to gene promoters.
- **3.** The specific sigma factor used to initiate transcription of a given gene will vary. It depends on following two factors:
 - a) On gene itself
 - b) On the environmental signals needed to initiate transcription of that gene.
- 4. Every molecule of RNA polymerase holoenzyme contains exactly one sigma factors .
- 5. The number of sigma factors varies between bacterial species.

#	Species	Types of sigma factors
1	E. coli	07
2	B. subtilis	18
3	Streptomyces coelicolor	60

E. coli Sigma Factors

(recognize promoters with different consensus sequences)

U

Subunit/gene	Size (# aa)	Approx. # of promoters	Promoter sequence recognized
Sigma 70 (rpoD)	613	1000	TTGACA-16 to 18 bp-TATAAT
Sigma 54 (rpoN)	477	5	CTGGNA-6 bp-TTGCA
Sigma S (rpoS)	330	100	TTGACA-16 to 18 bp-TATAAT
Sigma 32 (<i>rpoH</i>)	284	30	CCCTTGAA-13 to 15 bp- CCCGATNT
Sigma F(<i>rpoF</i>)	239	40	CTAAA-15 bp-GCCGATAA
Sigma E (rpoE)	202	20	GAA-16 bp-YCTGA
Sigma Fecl (fecl)	173	1–2	?

Anti-sigma Factors

- **1.** In the regulation of gene expression in prokaryotes, antisigma factors and inhibit transcriptional activity.
- 2. It has been found in a number of bacteria including *E.coli*.
- 3. Anti sigma factors are antagonists to the sigma factors which regulate number of cellular processes including flagellar production, stress response, transport and cellular growth etc.

Example : 70 Rsd in *E.coli*

Anti-anti-sigma Factors

- 1. The anti-sigma factor antagonist is an anti-anti-sigma factor.
- 2. It relieves inhibition of sigma factor activity by the antisigma factor.
- **Example : SpoIIAA protein in** *Bacillus subtilis*

Chain Elongation

Core polymerase – with no sigma

- Polymerase is accurate only about 1 error in 10,000 bases
- Even this error rate is OK, since many transcripts are made from each gene
- Elongation rate is 20-50 bases per second slower in G/C-rich regions (why??) and faster elsewhere
- Topoisomerases precede and follow polymerase to relieve supercoiling

Garrett & Grisham: Biochemistry, 2/e Figure 31.6

Chain Elongation

Saunders College Publishing

Functions of elongating RNA Polymerase

- 1. Unwind & Re-wind DNA
- 2. Holds separated strands of DNA
- 3. Catalysis of phosphodiester bond formation between two nucleotides
- 4. Monitor the progress of catalysis
- 5. To fix problems that occur during the process

Termination

Chain Termination

By <u>two</u> mechanisms

1. Rho - the termination factor protein

- rho is an ATP-dependent helicase
- it moves along RNA transcript, finds the "bubble", unwinds it and releases RNA chain
- 2. Specific sequences termination sites in DNA
 - inverted repeat, rich in G:C, which forms a stemloop in RNA transcript
 - 6-8 As in DNA coding for Us in transcript

Garrett & Grisham: Biochemistry, 2/e Figure 31.7

mRNA terminus

Saunders College Publishing

Saunders College Publishing

Figure 12.8 ρ-dependent termination

Rho Independent Termination in Prokaryotes

 ρ -independent termination requires two sequences in the RNA

A stem-loop structure upstream of 7-9 U residues

Key Concept

- 1 There are two classes of terminators: Those recognized solely by RNA polymerase itself without the requirement for any cellular factors are usually referred to as "intrinsic terminators." Others require a cellular protein called rho and are referred to as "rho-dependent terminators."
- Intrinsic termination requires recognition of a terminator sequence in DNA that codes for a hairpin structure in the RNA product.
- ³ The signals for termination lie mostly within sequences already transcribed by RNA polymerase, and thus termination relies on scrutiny of the template and/or the RNA product that the polymerase is transcribing.

Regulation of Transcription in Prokaryotes

Regulation by Three Mechanisms

- **1. Anti-termination Control**
- 2. Attenuation Control
- **3. Control by Proteins**
 - a) Negative Control by Repressors
 - e.g., Lac repressor
 - **b) Positive Control by Activators**
 - e.g., Catabolite Gene Activator Protein
 - c) Control by Sigma Factors

Anti-termination Control

Anti-termination is used a mechanism for **as** control of transcription in both phage and bacterial operons.

Anti-termination refers to modification of the enzyme, which allows it to read past a terminator into genes that lie downstream.
Anti-termination Control

FIGURE 19.44 An antitermination protein can act on RNA polymerase to enable it to read through a specific terminator.

Key Concept

- 1 An antitermination complex allows RNA polymerase to read through terminators.
- 2 Phage lambda uses antitermination systems for regulation of both its early and late transcripts, but the two systems work by completely different mechanisms.
- ³Binding of factors to the nascent RNA links the antitermination proteins to the terminator site through an RNA loop.
- Antitermination of transcription also occurs in rRNA operons.

-the 14 amino acid peptide formed from the leader sequence has 2 tryptophans.

```
-trp is a "rare" amino acid
```

3/27/2020

Recall that in bacteria, translation typically occurs almost simultaneously with transcription.

Attenuation Control

Free mRNA base pairs between 1&2 and between 3 & 4 (NO trp) Continuation of transcription at low conc of trp (2 & 3 will base pair) ≻At high trp conc ribosome will block 1 & 2 segment
≻Hence, 3 & 4 will base pair and due to 7 Us, chain will terminate

At low Trp level in the cytoplasm

E. coli Sigma Factors

(recognize promoters with different consensus sequences)

U

Subunit/gene	Size (# aa)	Approx. # of promoters	Promoter sequence recognized
Sigma 70 (rpoD)	613	1000	TTGACA-16 to 18 bp-TATAAT
Sigma 54 (rpoN)	477	5	CTGGNA-6 bp-TTGCA
Sigma S (rpoS)	330	100	TTGACA-16 to 18 bp-TATAAT
Sigma 32 (<i>rpoH</i>)	284	30	CCCTTGAA-13 to 15 bp- CCCGATNT
Sigma F(<i>rpoF</i>)	239	40	CTAAA-15 bp-GCCGATAA
Sigma E (rpoE)	202	20	GAA-16 bp-YCTGA
Sigma Fecl (fecl)	173	1–2	?